viernes, 18 de enero de 2019

Confirm Your Exclusive Entry to win $500 Every Day


 

Congratulatіons! You are a finalist in our Everyday Winnеrr Sweepstakes..

You're one of a select few who are entered to qualify for $500.00.

Please complete the final step to confirm your entry.

Enter Every Day..


 




















The definition of life has long been a challenge for scientists and philosophers, with many varied definitions put forward. This is partially because life is a process, not a substance. This is complicated by a lack of knowledge of the characteristics of living entities, if any, that may have developed outside of Earth. Philosophical definitions of life have also been put forward, with similar difficulties on how to distinguish living things from the non-living. Legal definitions of life have also been described and debated, though these generally focus on the decision to declare a human dead, and the legal ramifications of this decision. Biology See also: Organism The characteristics of life Since there is no unequivocal definition of life, most current definitions in biology are descriptive. Life is considered a characteristic of something that preserves, furthers or reinforces its existence in the given environment. This characteristic exhibits all or most of the following traits: Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature Organization: being structurally composed of one or more cells – the basic units of life Metabolism: transformation of energy by converting chemicals and energy into cellular components (anabolism) and decomposing organic matter (catabolism). Living things require energy to maintain internal organization (homeostasis) and to produce the other phenomena associated with life. Growth: maintenance of a higher rate of anabolism than catabolism. A growing organism increases in size in all of its parts, rather than simply accumulating matter. Adaptation: the ability to change over time in response to the environment. This ability is fundamental to the process of evolution and is determined by the organism's heredity, diet, and external factors. Response to stimuli: a response can take many forms, from the contraction of a unicellular organism to external chemicals, to complex reactions involving all the senses of multicellular organisms. A response is often expressed by motion; for example, the leaves of a plant turning toward the sun (potropism), and chemotaxis. Reproduction: the ability to produce new individual organisms, either aually from a single parent organism or ually from two parent organisms. These complex processes, called physiological functions, have underlying physical and chemical bases, as well as signaling and control mechanisms that are essential to maintaining life.
Alternative definitions See also: Entropy and life From a physics perspective, living beings are thermodynamic systems with an organized molecular structure that can reproduce itself and evolve as survival dictates. Thermodynamically, life has been described as an open system which makes use of gradients in its surroundings to create imperfect copies of itself. Hence, life is a self-sustained chemical system capable of undergoing Darwinian evolution. A major strength of this definition is that it distinguishes life by the evolutionary process rather than its chemical composition. Others take a systemic viewpoint that does not necessarily depend on molecular chemistry. One systemic definition of life is that living things are self-organizing and autopoietic (self-producing). Variations of this definition include Stuart Kauffman's definition as an autonomous agent or a multi-agent system capable of reproducing itself or themselves, and of completing at least one thermodynamic work cycle. This definition is extended by the apparition

No hay comentarios:

Publicar un comentario