martes, 28 de mayo de 2019

Toughest, Most Versatile Hose Design Yet!


 
The Amazing Hassle
Free Hose That Grows!!


Pocket Hose Silver Bullet

Super Lightweight & Will Never Kink

Hassle Free - Expands & Contracts On Its Own, Shrinks Back To Size For Easy Storage. Strong & Durable - Outer Casing Won't Snag, Tear, or Wear.

CLICK HERE TO SHOP NOW

Pocket Hose® Silver Bullet™









ater than that of water. John Henry Poynting later noted that the data should have led to a value of 5.448, and indeed that is the average value of the twenty-nine determinations Cavendish included in his paper. What was extraordinary about Cavendish's experiment was its elimination of every source of error and every factor that could disturb the experiment, and its precision in measuring an astonishingly small attraction, a mere 1/50,000,000 of the weight of the lead balls. The result that Cavendish obtained for the density of the Earth is within 1 percent of the currently accepted figure. Cavendish's work led others to accurate values for the gravitational constant (G) and Earth's mass. Based on his results, one can calculate a value for G of 6.754 × 10−11N-m2/kg2, which compares favourably with the modern value of 6.67428 × 10−11N-m2/kg2. Books often describe Cavendish's work as a measurement of either G or the Earth's mass. Since these are related to the Earth's density by a trivial web of algebraic relations, none of these sources are wrong, but they do not match the exact word choice of Cavendish, and this mistake has been pointed out by several authors. Cavendish's stated goal was to measure the Earth's density, although his result obviously calculates G to do so. The first time that the constant got this name was in 1873, almost 100 years after the Cavendish experiment, but the constant was in use since the time of Newton. Cavendish's results also give the Earth's mass. Electrical research Cavendish's electrical and chemical experiments, like those on heat, had begun while he lived with his father in a laboratory in their London house. Lord Charles Cavendish died in 1783, leaving almost all of his very substantial estate to Henry. Like his theory of heat, Cavendish's comprehensive theory of electricity was mathematical in form and was based on precise quantitative experiments. He published an early version of his theory in 1771, based on an expansive electrical fluid that exerted pressure. He demonstrated that if the intensity of electric force were inversely proportional to distance, then the electric fluid more than that needed for electrical neutrality would lie on the outer surface of an electrified sphere; then he confirmed this experimentally. Cavendish continued to work on electricity after this initial paper, but he published no more on the subject. Cavendish wrote papers on electrical topics for the Royal Society but the bulk of his electrical experiments did not become known until they were collected and published by James Clerk Maxwell a century later, in 1879, long after other scientists had been credited with the same results. Cavendish's electrical papers from the Philosophical Transactions of the Royal Society of London have been reprinted, together with most of his electrical manuscripts, in The Scientific Papers of the Honourable Henry Cavendish, F.R.S. (1921). According to the 1911 edition of Encyclopædia Britannica, among Cavendish's discoveries were the concept of electric potential (which he called the "degree of electrification"), an early unit of capacitance (that of a sphere one inch in diameter), the formula for the capacitance of a plate capacitor, the concept of the dielectric constant of a material, the relationship between electric potential and current (now called Ohm's Law) (1781), laws for the divis



 

No hay comentarios:

Publicar un comentario